工业大数据发展中面临哪些问题,如何提高应用
工业大数据作为工业与数字经济之间的桥梁纽带,对加快工业数字化转型、推进数实融合,支撑新型工业化建设意义重大。本文基于调查研究,梳理了地方在工业大数据基础设施、标杆示范、集群载体、要素保障方面取得的积极进展,总结了工业大数据发展面临的数据流通不畅、技术产品不强、解决方案不足、惯性思维局限等问题,并提出支持打造工业大数据先导区示范标杆、供需两端共同发力、促进数据要素流通、推动产业集聚发展的相关建议,工业大数据发展面临的问题有哪些。
数据要素汇聚难、流通少、转化慢,制约工业数据要素价值释放;一是数据“过度保护”制约工业数据汇聚。比如,杭州、青岛等城市调研反馈,企业出于对工业数据上云、上链的安全性信任不足,担心关系商业机密和竞争力的数据泄露,不愿推进工业数据网络化汇聚。二是标准协议不兼容限制工业数据共享流通。工业企业数字化转型进程不一,存在信息化基础不一致、设备兼容性不统一等问题,导致数据贯通不畅、应用不足,制约数据共享流通。现有的工业互联网平台通常面向重点行业企业提供专用性平台服务,标准架构互通性不强,技术产品复用能力有限,在工业数据整体的流通应用方面还缺少有力的平台支撑。三是工业企业能力不足阻碍工业数据价值的高效转化。部分工业企业尚未组建相对专业化的数据管理团队,“不会用”数据现象普遍存在。
技术根基不稳、产品竞争力不强,影响产业发展壮大;一是底层基础不牢,原创性不足。大数据治理、处理、分析技术不同程度上与国际先进水平存在差距,涉及底层框架、核心代码的自主知识产权把控能力低,开源开放的创新环境匮乏,创新要素无法及时满足产业链、创新链所需。以我为主导的大数据相关开源项目、开源平台对国际高端创新资源的吸引力不足,在贡献数量、活跃性、发版周期等方面与国外相比存在较大差距。二是自主可控工业技术产品亟待突破。我国工业软件长期被国外厂商垄断,备用昂贵且存在技术掣肘风险,短时期难以形成自己的优势方案供给,先进技术短板等问题较为突出。
应用需求和路径不明、解决方案适配性不足,阻碍工业数据深层次应用;一是工业企业不具备数据应用规划和设计能力。多数工业企业对数据应用场景缺乏系统规划,工业数据应用多集中在“可见”场景,如设备定期维护保养,产品质量抽检等,对设备关键组件衰退、非预期停机、工艺过程与质量关系不清晰等“不可见”的复杂、不确定性工业场景应对不足。二是工业数据应用解决方案能力不足。工业数字化机理模型多产生于高校和实验室,而工业数据背后融合了实际应用需求的专家经验,未能构建起有利于算法识别的特征,无法有效固化到软件平台。总体表现为普适性方案多、个性化方案少,单点单环节应用方案多、系统化一体化集成方案少,项目交付式方案多、合作运维式方案少。
要想提高应用首先是支持先行先试,引导打造工业大数据示范高地;一是推动有条件的地方建立工业大数据先导区,支持地方结合当地实际,研究制定具体实施方案,整合区域内企业、人才、资本等资源,推动工业大数据创新发展。二是开展综合型先导区和特色型先导区分类建设,在数据要素集聚、技术研发创新、集群建设培育、数据融合应用等方面开展集成式系统创新和特色化路径探索。三是协同发挥中心城市的辐射引领作用和中小城市的特色示范效应,调动大中小城市开展工业大数据先导区建设的积极性。
供需共同发力,着力提升工业大数据发展能级;一方面,推动开展核心技术攻关,围绕数据资源、工业软件等核心环节拓长补短,在关键核心领域培育一批示范引领作用强、辐射带动范围广的优秀产品和解决方案,通过工业大数据名企、名品认定等手段,推动工业大数据产品高端化、专业化发展。另一方面,开展工业数据应用创新试点示范,打造工业数据创新应用示范场景,推动各类场景算法模型在行业间、企业间的共享应用,激发工业数据应用需求。
安全发展并重,积极推动工业数据要素创新发展;一是支持地方探索建设工业大数据集成平台和大数据中心,开展工业企业数据管理能力成熟度(DCMM)评估认定,构建工业数据分类分级管理体系,促进工业数据资源高效汇聚和安全管理。二是推动建立多方参与、数据共享、利益分享的工业数据可信流通空间,引入多方计算、联邦学习、数据沙箱等技术,探索建立可用、可信、可追溯的工业数据流通机制。
鼓励制度创新,支持探索适应工业大数据发展的区域特色模式;一是发展数据驱动的业务模式创新,推动先导区内产业链合作、集采模式、协同研发等企业联动,打造产业互联网、智能制造体系等模式创新示范。二是鼓励探索开展工业数据权属认定、价值评估等政策制度和工作方式创新,推动工业数据资产化转化,强化本地数据和跨域数据的供给流通。三是推动一把手负责和跨部门协同机制,针对地方工业大数据发展加强政策针对性和创新性,切实完善专项资金、特色人才等要素保障。
(来源:网络文章整理编辑,分享此文出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。)
最新评论