工业大数据发展 推动各地方产业数据流通
业大数据作为工业与数字经济之间的桥梁纽带,对加快工业数字化转型、推进数实融合,支撑新型工业化建设意义重大。为此,2022-2023年赛迪研究院对上海、江苏、浙江、福建、山东、河南、杭州、宁波、厦门、青岛、深圳11个省市及部分行业领域专家开展调研。调研发现,地方在工业大数据基础设施、标杆示范、集群载体、要素保障方面取得了积极进展,但同时仍面临数据流通不畅、技术产品不强、解决方案不足、惯性思维局限等问题。下一步,建议打造工业大数据先导区示范标杆,同时要供需两端共同发力,促进数据要素流通,推动产业集聚发展。
支撑工业大数据流通的基础支撑能力基本形成
一是基础设施的建设部署加快推进。各地加大5G、千兆光网等数字基础设施的建设部署,提升工业互联网支撑服务能力。如山东省实施“感知能力”提升工程,部署物联网终端数超1.64亿个。青岛市建设了工业互联网企业综合服务平台,累计上线特定行业、领域工业互联网平台40个。福州市通过工业互联网平台接入600多家纺织化纤企业。二是工业数据的采集汇聚不断加强。各地积极实施数据管理能力国家标准,强化数据全生命周期管理和数据资源体系建设。如山东省培育数据共享、数据开放、数据流通、公共服务四类60个平台,构建工业大数据平台体系。江苏省牵头制定了《信息技术大数据工业产品核心元数据》国家标准,推进工业大数据产业标准化。三是数据资源的资产化运营加速落地。各地积极培育数据要素市场,打造数据交易中心、数据中介、数据经纪人等数据服务新模式。如江苏省、广东省发布首席数据官制度。上海市布局新型数据交易所,推进多层次数据交易流通机制,打造“数商”交易生态。
释放工业大数据价值的应用标杆示范不断涌现
一是示范应用场景加速涌现。全国过半省市发布数字化场景清单,引导工业领域新业态新模式发展。如湖南、河南、江苏等省发布制造业数字化转型典型应用场景。青岛市搭建场景赋能公共服务平台,累计发布“工业赋能”场景2110个,共4076个企业需求被150家服务商接单。山东省开展数据应用效能综合评价,推动典型案例“一地创新、多地复用”。二是工业企业全流程数据驱动能力不断加强。我国已培育形成110家智能制造试点示范工厂,聚焦研发、设计、生产、物流等制造过程的重点环节,共同打造241个智能制造优秀场景,且多个场景之间实现了良好地集成协同。比如,地方层面,浙江省建成41家“未来工厂”,以数据驱动生产方式和企业形态变革。江苏省培育198个智能制造示范工厂,推动企业“智改数转”。上海市公布100家智能工厂名单,发挥智能制造示范工厂标杆带动效应。三是地方探索开展工业大数据示范区建设。如江苏省打造了7个省级工业大数据应用示范区,聚焦工业大数据开展先行先试。
壮大工业大数据产业的集群载体创新发展提速
一是产业集聚区加速形成。各地加强产业基地、产业园区、重点发展试验区等产业载体建设,推动大数据产业集聚发展。如河南省培育5个大数据产业示范园区;江苏省打造了10家省级大数据产业园,并出台两个相关团体标准,指导地方开展园区创建。二是集群主体的平台化运营能力不断提升。如宁波市依托产业大脑平台,集成政府侧和企业侧应用场景,打通工业经济相关数据,面向产业链上下游提供智能服务。三是集群跨域协同和网络协作模式加快探索。如广州、佛山等城市加速终端产线的数字化升级,推动建设覆盖智能家电全产业链和产品全生命周期的规范统一的标准体系,推进跨区域协同。无锡市上线物联网集群综合服务平台,与上海、合肥、杭州等市、区共建长三角面向物联网领域“感存算一体化”超级中试中心,建立网络化协作体系。
打造工业大数据生态的资源要素保障加快完备
一是公共服务持续完善。各地推进建设工业大数据创新中心,发布制造业数字化转型实施指南,推动工业大数据服务生态加快构建。如福建、浙江、苏州等省、市等组建工业大数据研究中心,建设大数据应用试验平台,推动工业大数据创新发展。厦门、宁波等城市对全市工业企业进行数字化转型升级调研评估,针对性推进企业工业大数据采集分析相关工作。二是大数据专业技术人才队伍建设不断加强。各地通过在线培训、基地实训等多元化方式,加强新型数字经济人才培训。如山东省深入开展“万名数字专员进企业”,创新推行CDO(总数据师)制度,逐步实现大型企业全覆盖。苏州市新建4家涉数字经济高技能人才公共实训基地,全市新增数字技能人才4.93万人。三是产融结合促进工业数据应用扩展。各地加强产融服务,通过多样化资金渠道和支持机制促进工业数据应用创新。如宁波市落地首版次软件综合创新保险,分担创新企业和用户单位风险,加快工业软件及大数据软件等新产品的普及推广,促进工业数据采集应用。山东省计划成立数字经济发展基金,引导更多金融资源流向数字技术创新和数字经济发展。
(来源:网络文章整理编辑,分享此文出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。)
最新评论